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Report 3

Note: the problem was later modified so that the equation we should use to find the plane is 
. My student number is C2TB1702, so I will be using 1702.

My Line of Thinking
We can break down the general plane equation  and rewrite it as a matrix 
multiplication.

replacing x, y and z by values corresponding to the coordinates of the three points:

as all random values are known, there are really only 3 unknowns in this system of linear equations, and since 
we have 3 equations, it is possible to get their values using Gaussian Elimination.

Carrying over the math to Octave

ax+ by+ cz =
(studentnumber)

ax+ by+ cz = 1702
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For the purposes of the script, let’s denote the matrix containing  coordinates of the three points as , the 
matrix containing  and  values as , and the matrix containing student numbers as capital . I will use 
lowercase  for the matrix containing random values.

The function rand()  only generates values between 0 and 1, so in order to get values between -0.1 and 0.1, 
we need to modify the original function.

We can specify the size of the interval we want by multiplying the rand()  function with the interval length we 
want. For example, if we want the length to be 5, we can do 5*rand()  and this will multiply the generated 
random value by 5, which means our original interval length of 1 is now multiplied to 5.

We can also specify where the interval starts and ends on the number line by adding the minimum point from 
the rand()  function multiplied by the interval length.

Putting all of these together, we can conclude an explicit formula for generating random values.

and this will generate a matrix r  that contains random values that exist in the interval .

Conversely, to generate a matrix r  that contains random values between -0.1 and 0.1, we set  
and , and write the code:

% First, initialize random numbers 
r = -0.1+(0.2)*rand(3,3); 
% r is a 3x3 matrix containing random numbers we can use for rx1,rx2 and so on

To better visualize r:

Now we can initialize the matrix containing the coordinates of the three points.

% Next, initialize the points 
P = [0.2,0.1,1.0;3.0,0.1,-1.0;1.0,-2.0,-0.5] + r;

To better visualize this line:

which is equivalent to:

with the points initialized, we can then define the matrix containing the student number.

xyz P

a, b c Q R

r

PQ = R

r = min+ rand(rows, columns) ∗ length

(min,min+ length)

min = −0.1
length = 0.2
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% Then we initialize the matrix containing student number 
R = [1702;1702;1702];

With all the matrices containing known variables initialized, we can then do

% Do Gaussian elimination to find unknowns and collect in Q 
Q = P\R;

Finally, print the results by assigning Q(1)  to , Q(2)  to  and Q(3)  to .

printf('a = %f, b = %f, c = %f\n',Q(1), Q(2), Q(3))

Output differs from one iteration of the program to the other, so we need to verify the program by checking if 
the points we are given are on the plane. 

Checking if the plane equation is correct
We can use the dot product to check if the points are on the plane we have. If the values of  and  are 
correct, we should receive our student number back.

correctRows = 0; % Initialize number of correct rows as 0 
for i = 1:3 % Iterate from row 1 through 3 
  isR = round(dot(P(i,:),Q)) % dot row i of P with Q 
  if isR == R(i) % Check if the result of the dot is same as student number 
    printf('Row %d is correct\n', i) 
    correctRows += 1; % If this row is correct, add 1 to # of correct rows 
  else 
    printf('!! Row %d is INCORRECT !!\n', i) 
  endif 
endfor

First we initialize correctRows  as 0. As we come across rows that the program deems correct, we add to this 
variable.

Next, we use a for  loop to iterate through the three rows of the matrix .

For each row of the matrix, we want to dot it with the  matrix, and check if the resulting number is consistent 
with out student number. I name that resulting number isR , as we are checking if it’s the same as R(i) . Note 
that since R  contains the same 3 numbers, it’s arbitrary whether we use R(i)  or just 1702 (my student 
number). However, I believe it is good practice to use the actual number inside the matrix, as we may come 
across other problems that have differing values in the R  matrix.

Also note that I used round()  to round the result of the dot multiplication, as we want to compare it with a 
round number.

After iterating through all rows of , we can now check if correctRows  equal the number of rows we have.

if correctRows == length(P) % Check if # of correct rows equal # of rows in P 
  printf('All rows are correct. The program is working as intended.\n') 
else 
  printf('There are incorrect rows. Check the program again for bugs.\n') 
endif
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Note that as we are using variables from the first, main script, we have to run that main script firsts before we 
can run this script to check its validity.

A Test
Running main script CAPS_02_C2TB1702_coplanar.m :

P = 
 
   0.141138   0.058446   0.967838 
   2.974780   0.027182  -1.097699 
   1.079690  -2.003029  -0.555198 
 
a = 1178.543150, b = -665.380413, c = 1626.875525 
>>

Doing calculations manually to check the validity of the results:

The result is also validated by our checking program.

isR = 1702 
Row 1 is correct 
isR = 1702 
Row 2 is correct 
isR = 1702 
Row 3 is correct 
All rows are correct. The program is working as intended. 
>>

⎣

⎡0.141138
2.974780
1.079690

0.058446
0.027182
−2.003029

0.967838
−1.097699
−0.555198⎦

⎤

⎣

⎡1178.543150
−665.380413
1626.875525⎦

⎤

=
⎣

⎡ 0.141138 × 1178.543150 + 0.058446 × (−665.380413) + 0.967838 × 1626.875525
2.974780 × 1178.543150 + 0.027182 × (−665.380413) + (−1.097699) × 1626.875525
1.079690 × 1178.543150 + (−2.003029) × (−665.380413) + (−0.555198) × 1626.875525⎦

⎤

=
⎣

⎡1702.000354
1702.000612
1701.999493⎦

⎤


